What Are Metamaterials Used For?
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).
ADS Google Scholar
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).
ADS Google Scholar
Zagoskin, A. M., Felbacq, D. & Rousseau, E. Quantum metamaterials in the microwave and optical ranges. EPJ Quantum Technol. 3, 2 (2016).
Google Scholar
Wiltshire, M. C. K. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001).
ADS Google Scholar
Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2009).
ADS Google Scholar
Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).
ADS Google Scholar
Chang, C.-C. et al. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Phys. Rev. Lett. 123, 237401 (2019).
ADS Google Scholar
Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).
ADS Google Scholar
Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).
ADS Google Scholar
Huang, L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169–1190 (2018).
Google Scholar
Holloway, C. L. et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54, 10–35 (2012).
ADS Google Scholar
Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139 (2017).
ADS Google Scholar
Schurig, D., Mock, J. J. & Smith, D. R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006).
ADS Google Scholar
Padilla, W. J. et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007).
ADS Google Scholar
Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).
ADS Google Scholar
Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).
ADS Google Scholar
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
ADS Google Scholar
Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000).
ADS Google Scholar
Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 36617 (2005).
ADS Google Scholar
Greegor, R. et al. Simulation and testing of a graded negative index of refraction lens. Appl. Phys. Lett. 87, 091114 (2005). Demonstration of metamaterial gradient index lens.
ADS Google Scholar
Smith, D. R., Mock, J. J., Starr, A. & Schurig, D. Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005).
ADS Google Scholar
Pendry, J. B. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
MathSciNet MATH ADS Google Scholar
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
MathSciNet MATH ADS Google Scholar
Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
MathSciNet ADS Google Scholar
Rahm, M., Li, J.-S. & Padilla, W. J. Thz wave modulators: a brief review on different modulation techniques. J. Infrared Millim. Terahertz Waves 34, 1–27 (2013).
Google Scholar
Stratton, J. Electromagnetic Theory (IEEE, 2007).
Mo, T. C., Papas, C. H. & Baum, C. E. General scaling method for electromagnetic fields with application to a matching problem. J. Math. Phys. 14, 479–483 (1973).
ADS Google Scholar
Zhao, X., Duan, G., Wu, K., Anderson, S. W. & Zhang, X. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv. Mater. 31, 1905461 (2019).
Google Scholar
Gollub, J. N. et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci. Rep. 7, 42650 (2017).
ADS Google Scholar
Escorcia, I., Grant, J., Gough, J. & Cumming, D. R. S. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt. Lett. 41, 3261 (2016).
ADS Google Scholar
Suen, J. Y. et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276 (2017). Demonstration of a fully integrated metamaterial detector.
ADS Google Scholar
Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).
ADS Google Scholar
Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).
ADS Google Scholar
Lee, D., Gwak, J., Badloe, T., Palomba, S. & Rho, J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Adv. 2, 605–625 (2020).
ADS Google Scholar
Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021).
ADS Google Scholar
Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).
ADS Google Scholar
Capolino, F. Theory and Phenomena of Metamaterials (CRC, 2009).
Google Scholar
Simovski, C An Introduction to Metamaterials and Nanophotonics (Cambridge Univ. Press, 2020).
Google Scholar
Engheta, N. Metamaterials: Physics and Engineering Explorations (Wiley-Interscience, 2006).
Google Scholar
Padilla, W., Basov, D. & Smith, D. Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006).
Google Scholar
Ming, X., Liu, X., Sun, L. & Padilla, W. J. Degenerate critical coupling in all-dielectric metasurface absorbers. Opt. Express 25, 24658 (2017).
ADS Google Scholar
Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).
Google Scholar
Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).
Google Scholar
Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).
ADS Google Scholar
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
ADS Google Scholar
Pfeiffer, C. & Grbic, A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).
ADS Google Scholar
Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).
Google Scholar
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
ADS Google Scholar
Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).
ADS Google Scholar
Lipworth, G. et al. Metamaterial apertures for coherent computational imaging on the physical layer. J. Opt. Soc. Am. A 30, 1603–1612 (2013).
ADS Google Scholar
Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).
ADS Google Scholar
Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014). Experimental study showing single pixel imaging with a metamaterial spatial light modulator.
ADS Google Scholar
Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).
ADS Google Scholar
Golay, M. J. E. Multi-slit spectrometry. J. Opt. Soc. Am. 39, 437–444 (1949).
ADS Google Scholar
Dicke, R. H. Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101 (1968).
ADS Google Scholar
Brady, D. J. (ed.) in Optical Imaging and Spectroscopy 11–53 (Wiley, 2008).
Yao, P. et al. Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides. Phys. Rev. B 80, 195106 (2009).
ADS Google Scholar
Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).
ADS Google Scholar
Iorsh, I., Poddubny, A., Orlov, A., Belov, P. & Kivshar, Y. S. Spontaneous emission enhancement in metal–dielectric metamaterials. Phys. Lett. A 376, 185–187 (2012).
ADS Google Scholar
Lu, D., Kan, J. J., Fullerton, E. E. & Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9, 48–53 (2014).
ADS Google Scholar
Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).
ADS Google Scholar
Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014). Experimental demonstration of a metamaterial source operating at terahertz frequencies.
ADS Google Scholar
Yardimci, N. T. & Jarrahi, M. Nanostructure-enhanced photoconductive terahertz emission and detection. Small 14, 1802437 (2018).
Google Scholar
Burokur, S. N., Daniel, J. P., Ratajczak, P. & De Lustrac, A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl. Phys. Lett. 97, 064101 (2010).
ADS Google Scholar
Fong, B. H., Colburn, J. S., Ottusch, J. J., Visher, J. L. & Sievenpiper, D. F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).
ADS Google Scholar
TextXBadawe, M. E., Almoneef, T. S. & Ramahi, O. M. A true metasurface antenna. Sci. Rep. 6, 19268 (2016).
ADS Google Scholar
Smith, D. R., Yurduseven, O., Mancera, L. P., Bowen, P. & Kundtz, N. B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 8, 054048 (2017).
ADS Google Scholar
Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).
ADS Google Scholar
Deng, Z.-L., Li, X. & Li, G. Metasurface holography. Synth. Lectures Mater. Opt. 1, 1–76 (2020).
Google Scholar
Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).
ADS Google Scholar
Liu, X., Starr, T., Starr, A. F. & Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 1–4 (2010).
Google Scholar
Liu, X. & Padilla, W. J. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).
ADS Google Scholar
Fan, K., Suen, J. Y. & Padilla, W. J. Graphene metamaterial spatial light modulator for infrared single pixel imaging. Opt. Express 25, 25318 (2017).
ADS Google Scholar
Chen, Q. & Cumming, D. R. S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056 (2010).
ADS Google Scholar
Xu, T., Wu, Y.-K., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 159 (2010).
Google Scholar
Larouche, S., Tsai, Y. J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).
ADS Google Scholar
Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).
ADS Google Scholar
Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).
ADS Google Scholar
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys. Usp. 10, 509–514 (1968).
ADS Google Scholar
Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).
ADS Google Scholar
Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
ADS Google Scholar
Shelby, R. A. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
ADS Google Scholar
Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). Study predicting perfect lens properties possible with negative refractive index metamaterials.
ADS Google Scholar
Adams, W., Sadatgol, M. & Güney, D. O. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging. AIP Adv. 6, 100701 (2016).
ADS Google Scholar
Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004). Subwavelength focusing with negative index metamaterials.
ADS Google Scholar
Fang, N. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). Experimental demonstration of a metamaterial superlens.
ADS Google Scholar
Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595–1595 (2006).
Google Scholar
Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).
ADS Google Scholar
Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006).
ADS Google Scholar
Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).
ADS Google Scholar
Maxwell, J. C. The Scientific Papers of James Clerk Maxwell, Vol. 1 (Dover, 2011).
Luneburg, R. K. Mathematical Theory of Optics (Univ. California Press, 1964).
MATH Google Scholar
Wood, R. Physical Optics (Macmillan, 1911).
Marchand, E. Gradient Index Optics (Academic, 1978).
Google Scholar
PIERSCIONEK, B. K. Refractive index contours in the human lens. Exp. Eye Res. 64, 887–893 (1997).
Google Scholar
Pierscionek, B. K. & Regini, J. W. The gradient index lens of the eye: an opto-biological synchrony. Prog. Retin. Eye Res. 31, 332–349 (2012).
Google Scholar
Partridge, J. C. et al. Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis). Proc. R. Soc. B Biol. Sci. 281, 20133223 (2014).
Google Scholar
Rim, S.-B., Catrysse, P. B., Dinyari, R., Huang, K. & Peumans, P. The optical advantages of curved focal plane arrays. Opt. Express 16, 4965 (2008).
ADS Google Scholar
Liu, R. et al. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Opt. Express 17, 21030 (2009).
ADS Google Scholar
Driscoll, T. et al. Free-space microwave focusing by a negative-index gradient lens. Appl. Phys. Lett. 88, 081101 (2006).
ADS Google Scholar
Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).
ADS Google Scholar
Yin, L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005).
ADS Google Scholar
Liu, Z. et al. Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005).
ADS Google Scholar
Huang, F. M., Zheludev, N., Chen, Y. & de Abajo, F. J. G. Focusing of light by a nanohole array. Appl. Phys. Lett. 90, 091119 (2007).
ADS Google Scholar
Shi, H. et al. Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815 (2005).
ADS Google Scholar
Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009).
ADS Google Scholar
Sun, Z. & Kim, H. K. Refractive transmission of light and beam shapingwith metallic nano-optic lenses. Appl. Phys. Lett. 85, 642–644 (2004).
ADS Google Scholar
Collischon, M. et al. Binary blazed reflection gratings. Appl. Opt. 33, 3572 (1994).
ADS Google Scholar
Zangwill, A. Modern Electrodynamics (Cambridge Univ. Press, 2013).
MATH Google Scholar
What are metamaterials used for? Metamaterials can be defined as artificially structured materials used to control and mold the flow of electromagnetic waves or possibly any other type of physical waves.
— Sun Tien-Naga (Morninghawk) (@SteamPoweredDM) Jul 22, 2020
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
ADS Google Scholar
Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).
Google Scholar
Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017).
ADS Google Scholar
Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).
Google Scholar
Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 4, 2638–2649 (2017).
Google Scholar
Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081 (1998).
ADS Google Scholar
Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143 (1999).
ADS Google Scholar
Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003).
ADS Google Scholar
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
ADS Google Scholar
Liu, W., Cheng, H., Tian, J. & Chen, S. Diffractive metalens: from fundamentals, practical applications to current trends. Adv. Phys. X 5, 1742584 (2020).
Google Scholar
Moon, S.-W., Kim, Y., Yoon, G. & Rho, J. Recent progress on ultrathin metalenses for flat optics. iScience 23, 101877 (2020).
ADS Google Scholar
Zou, X. et al. Imaging based on metalenses. PhotoniX 1, 2 (2020).
Google Scholar
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).
ADS Google Scholar
Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805 (2019).
ADS Google Scholar
Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).
ADS Google Scholar
Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).
ADS Google Scholar
Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016).
ADS Google Scholar
Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).
ADS Google Scholar
Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).
ADS Google Scholar
Schurig, D., Pendry, J. B. & Smith, D. R. Transformation-designed optical elements. Opt. Express 15, 14772 (2007). Experimental report demonstrating the design of optical components through transformation optics.
ADS Google Scholar
Sun, F. et al. Transformation optics: from classic theory and applications to its new branches. Laser Photonics Rev. 11, 1700034 (2017).
ADS Google Scholar
Schurig, D. An aberration-free lens with zero F-number. New J. Phys. 10, 115034 (2008).
ADS Google Scholar
Landy, N. I., Kundtz, N. & Smith, D. R. Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. Phys. Rev. Lett. 105, 193902 (2010).
ADS Google Scholar
Zhao, Y.-Y. et al. Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016).
ADS Google Scholar
Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct. Fundamentals Appl. 6, 87–95 (2008).
ADS Google Scholar
Roberts, D. A., Rahm, M., Pendry, J. B. & Smith, D. R. Transformation-optical design of sharp waveguide bends and corners. Appl. Phys. Lett. 93, 251111 (2008).
ADS Google Scholar
Smith, D. R., Urzhumov, Y., Kundtz, N. B. & Landy, N. I. Enhancing imaging systems using transformation optics. Opt. Express 18, 21238 (2010).
ADS Google Scholar
Zhang, J., Pendry, J. B. & Luo, Y. Transformation optics from macroscopic to nanoscale regimes: a review. Adv. Photonics 1, 1 (2019).
Google Scholar
Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).
ADS Google Scholar
Ginis, V. & Tassin, P. Transformation optics beyond the manipulation of light trajectories. Phil. Trans. R. Soc. A 373, 20140361 (2015).
ADS Google Scholar
McCall, M. et al. Roadmap on transformation optics. J. Opt. 20, 063001 (2018).
ADS Google Scholar
Isakov, D., Stevens, C. J., Castles, F. & Grant, P. S. 3D-printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions. Adv. Mater. Technol. 1, 1600072 (2016).
Google Scholar
Zhou, F. et al. Additive manufacturing of a 3D terahertz gradient-refractive index lens. Adv. Opt. Mater. 4, 1034–1040 (2016).
Google Scholar
Chan, W. L. et al. A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511 (2009).
ADS Google Scholar
Chaves, J. Introduction to Nonimaging Optics (CRC, 2016).
Winston, R. Nonimaging Optics (Elsevier, 2005).
Davis, D. S. Multiplexed imaging by means of optically generated Kronecker products: 1. The basic concept. Appl. Opt. 34, 1170 (1995).
ADS Google Scholar
Nadell, C. C., Watts, C. M., Montoya, J. A., Krishna, S. & Padilla, W. J. Single pixel quadrature imaging with metamaterials. Adv. Opt. Mater. 4, 66–69 (2015).
Google Scholar
Watts, C. M., Nadell, C. C., Montoya, J., Krishna, S. & Padilla, W. J. Frequency-division-multiplexed single-pixel imaging with metamaterials. Optica 3, 133 (2016).
ADS Google Scholar
Fan, K., Suen, J., Wu, X. & Padilla, W. J. Graphene metamaterial modulator for free-space thermal radiation. Opt. Express 24, 25189 (2016).
ADS Google Scholar
Hand, T. H. & Cummer, S. A. Reconfigurable reflectarray using addressable metamaterials. IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).
ADS Google Scholar
Badloe, T., Mun, J. & Rho, J. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. J. Nanomater. 2017, 2361042 (2017).
Google Scholar
Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).
ADS Google Scholar
Renzo, M. D. et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 129 (2019).
Google Scholar
Renzo, M. D. et al. Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 1, 798–807 (2020).
Google Scholar
Liaskos, C. et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56, 162–169 (2018).
Google Scholar
Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218–e218 (2014).
ADS Google Scholar
Abadal, S., Cui, T.-J., Low, T. & Georgiou, J. Programmable metamaterials for software-defined electromagnetic control: circuits, systems, and architectures. IEEE J. Emerg. Sel. Topics Circuits Syst. 10, 6–19 (2020).
ADS Google Scholar
Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).
ADS Google Scholar
Marcuvitz, N. Waveguide Handbook (McGraw-Hill, 1951).
Google Scholar
Collin, R. Field Theory of Guided Waves (IEEE, 1991).
MATH Google Scholar
Harvey, A. F. Periodic and guiding structures at microwave frequencies. IRE Trans. Microw. Theory Tech. 8, 30–61 (1960).
ADS Google Scholar
Jackson, D. R., Caloz, C. & Itoh, T. Leaky-wave antennas. Proc. IEEE 100, 2194–2206 (2012).
Google Scholar
Chen, H.-T. et al. Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007).
ADS Google Scholar
Tao, H. et al. Microwave and terahertz wave sensing with metamaterials. Opt. Express 19, 21620 (2011). Experimental demonstration of a metamaterial bolometric detector.
ADS Google Scholar
Niesler, F. B. P., Gansel, J. K., Fischbach, S. & Wegener, M. Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012).
ADS Google Scholar
Szentpáli, B. et al. Thermopile antennas for detection of millimeter waves. Appl. Phys. Lett. 96, 133507 (2010).
ADS Google Scholar
Sizov, F. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol. 33, 123001 (2018).
ADS Google Scholar
Hui, Y., Gomez-Diaz, J. S., Qian, Z., Alù, A. & Rinaldi, M. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 7, 11249 (2016).
ADS Google Scholar
Montoya, J. A., Tian, Z.-B., Krishna, S. & Padilla, W. J. Ultra-thin infrared metamaterial detector for multicolor imaging applications. Opt. Express 25, 23343 (2017).
ADS Google Scholar
Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).
ADS Google Scholar
Benz, A. et al. Resonant metamaterial detectors based on THz quantum-cascade structures. Sci. Rep. 4, 4269 (2014).
Google Scholar
Kuznetsov, S. A., Paulish, A. G., Navarro-Cía, M. & Arzhannikov, A. V. Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci. Rep. 6, 21079 (2016).
ADS Google Scholar
Maier, T. & Brueckl, H. Multispectral microbolometers for the midinfrared. Opt. Lett. 35, 3766 (2010).
ADS Google Scholar
Stewart, J. W., Vella, J. H., Li, W., Fan, S. & Mikkelsen, M. H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2019).
ADS Google Scholar
Jung, J.-Y. et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Sci. Rep. 7, 430 (2017).
ADS Google Scholar
Stöckmann, F. Photodetectors, their performance and their limitations. Appl. Phys. 7, 1–5 (1975).
ADS Google Scholar
Rogalski, A. Infrared and Terahertz Detectors (CRC, 2018).
Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
ADS Google Scholar
Freire, M. J., Marques, R. & Jelinek, L. Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 93, 231108 (2008). Experimental demonstration of a negative μ metamaterial for MRI.
ADS Google Scholar
Haines, K., Neuberger, T., Lanagan, M., Semouchkina, E. & Webb, A. High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging. J. Magn. Reson. 200, 349–353 (2009).
ADS Google Scholar
Freire, M. J., Jelinek, L., Marques, R. & Lapine, M. On the applications of metamaterial lenses for magnetic resonance imaging. J. Magn. Reson. 203, 81–90 (2010).
ADS Google Scholar
Slobozhanyuk, A. P. et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28, 1832–1838 (2016).
Google Scholar
Zhang, S. et al. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 113, 111104 (2018).
ADS Google Scholar
Wu, P. C. et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568–2573 (2017).
Google Scholar
Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018).
Google Scholar
Li, W. & Valentine, J. G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017).
Google Scholar
Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).
ADS Google Scholar
Lu, F., Lee, J., Jiang, A., Jung, S. & Belkin, M. A. Thermopile detector of light ellipticity. Nat. Commun. 7, 12994 (2016).
ADS Google Scholar
Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).
ADS Google Scholar
Kuznetsov, S. A., Paulish, A. G., Gelfand, A. V., Lazorskiy, P. A. & Fedorinin, V. N. Bolometric THz-to-IR converter for terahertz imaging. Appl. Phys. Lett. 99, 023501 (2011).
ADS Google Scholar
Alves, F., Pimental, L., Grbovic, D. & Karunasiri, G. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Sci. Rep. 8, 12466 (2018).
ADS Google Scholar
Fan, K., Suen, J. Y., Liu, X. & Padilla, W. J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601 (2017).
ADS Google Scholar
Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
ADS Google Scholar
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).
ADS Google Scholar
Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).
MathSciNet MATH ADS Google Scholar
Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 13, 4148–4151 (2013).
ADS Google Scholar
Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).
Google Scholar
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 370–387 (2016).
Google Scholar
Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).
ADS Google Scholar
Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 13864–13878 (2009).
Google Scholar
Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).
ADS Google Scholar
Zhao, X. et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5, 303 (2018).
ADS Google Scholar
Lee, J. et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).
Google Scholar
Shrekenhamer, D., Chen, W.-C. & Padilla, W. J. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 110, 177403 (2013).
ADS Google Scholar
Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019).
ADS Google Scholar
Song, J. C. W. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).
ADS Google Scholar
Wang, J. & Jiang, Y. Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials. Opt. Express 25, 5206 (2017).
ADS Google Scholar
Diebold, A. V., Imani, M. F., Sleasman, T. & Smith, D. R. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures. Optica 5, 1529 (2018).
ADS Google Scholar
Harmuth, H. Sequency Theory: Foundations and Applications (Academic, 1977).
MATH Google Scholar
Harwit, M. Hadamard Transform Optics (Academic, 1979).
MATH Google Scholar
Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photonics 13, 13–20 (2018).
ADS Google Scholar
Swift, R. D., Wattson, R. B., Decker, J. A., Paganetti, R. & Harwit, M. Hadamard transform imager and imaging spectrometer. Appl. Opt. 15, 1595 (1976).
ADS Google Scholar
Zhang, Z., Ma, X. & Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015).
ADS Google Scholar
Wenwen, M. et al. Sparse Fourier single-pixel imaging. Opt. Express 27, 31490 (2019).
ADS Google Scholar
Stantchev, R. I. & Pickwell-MacPherson, E. in Terahertz Technology (IntechOpen, 2021).
Takhar, D. et al. in Computational Imaging IV Vol. 6065 (eds Bouman, C. A. et al.) 606509 (SPIE, 2006).
Pitsianis, N. P. et al. in Intelligent Integrated Microsystems Vol. 6232 (eds Athale, R. A. & Zolper, J. C.) 62320A (SPIE, 2006).
Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
MathSciNet MATH Google Scholar
Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).
MathSciNet MATH Google Scholar