What Are Metamaterials Used For?

Potential applications of metamaterials are diverse and include optical filters, medical devices, remote aerospace applications, sensor detection and infrastructure monitoring, smart solar power management, crowd control, radomes, high-frequency battlefield communication and lenses for high-gain antennas, improving ...

Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

ADS Google Scholar

Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

ADS Google Scholar

Zagoskin, A. M., Felbacq, D. & Rousseau, E. Quantum metamaterials in the microwave and optical ranges. EPJ Quantum Technol. 3, 2 (2016).

Google Scholar

Wiltshire, M. C. K. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001).

ADS Google Scholar

Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2009).

ADS Google Scholar

Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

ADS Google Scholar

Chang, C.-C. et al. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Phys. Rev. Lett. 123, 237401 (2019).

ADS Google Scholar

Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

ADS Google Scholar

Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

ADS Google Scholar

Huang, L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169–1190 (2018).

Google Scholar

Holloway, C. L. et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54, 10–35 (2012).

ADS Google Scholar

Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139 (2017).

ADS Google Scholar

Schurig, D., Mock, J. J. & Smith, D. R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006).

ADS Google Scholar

Padilla, W. J. et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007).

ADS Google Scholar

Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

ADS Google Scholar

Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

ADS Google Scholar

Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

ADS Google Scholar

Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000).

ADS Google Scholar

Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 36617 (2005).

ADS Google Scholar

Greegor, R. et al. Simulation and testing of a graded negative index of refraction lens. Appl. Phys. Lett. 87, 091114 (2005). Demonstration of metamaterial gradient index lens.

ADS Google Scholar

Smith, D. R., Mock, J. J., Starr, A. & Schurig, D. Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005).

ADS Google Scholar

Pendry, J. B. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

MathSciNet MATH ADS Google Scholar

Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

MathSciNet MATH ADS Google Scholar

Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

MathSciNet ADS Google Scholar

Rahm, M., Li, J.-S. & Padilla, W. J. Thz wave modulators: a brief review on different modulation techniques. J. Infrared Millim. Terahertz Waves 34, 1–27 (2013).

Google Scholar

Stratton, J. Electromagnetic Theory (IEEE, 2007).

Mo, T. C., Papas, C. H. & Baum, C. E. General scaling method for electromagnetic fields with application to a matching problem. J. Math. Phys. 14, 479–483 (1973).

ADS Google Scholar

Zhao, X., Duan, G., Wu, K., Anderson, S. W. & Zhang, X. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv. Mater. 31, 1905461 (2019).

Google Scholar

Gollub, J. N. et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci. Rep. 7, 42650 (2017).

ADS Google Scholar

Escorcia, I., Grant, J., Gough, J. & Cumming, D. R. S. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt. Lett. 41, 3261 (2016).

ADS Google Scholar

Suen, J. Y. et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276 (2017). Demonstration of a fully integrated metamaterial detector.

ADS Google Scholar

Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).

ADS Google Scholar

Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).

ADS Google Scholar

Lee, D., Gwak, J., Badloe, T., Palomba, S. & Rho, J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Adv. 2, 605–625 (2020).

ADS Google Scholar

Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021).

ADS Google Scholar

Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

ADS Google Scholar

Capolino, F. Theory and Phenomena of Metamaterials (CRC, 2009).

Google Scholar

Simovski, C An Introduction to Metamaterials and Nanophotonics (Cambridge Univ. Press, 2020).

Google Scholar

Engheta, N. Metamaterials: Physics and Engineering Explorations (Wiley-Interscience, 2006).

Google Scholar

Padilla, W., Basov, D. & Smith, D. Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006).

Google Scholar

Ming, X., Liu, X., Sun, L. & Padilla, W. J. Degenerate critical coupling in all-dielectric metasurface absorbers. Opt. Express 25, 24658 (2017).

ADS Google Scholar

Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

Google Scholar

Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

Google Scholar

Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

ADS Google Scholar

Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

ADS Google Scholar

Pfeiffer, C. & Grbic, A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

ADS Google Scholar

Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

Google Scholar

Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

ADS Google Scholar

Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

ADS Google Scholar

Lipworth, G. et al. Metamaterial apertures for coherent computational imaging on the physical layer. J. Opt. Soc. Am. A 30, 1603–1612 (2013).

ADS Google Scholar

Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

ADS Google Scholar

Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014). Experimental study showing single pixel imaging with a metamaterial spatial light modulator.

ADS Google Scholar

Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).

ADS Google Scholar

Golay, M. J. E. Multi-slit spectrometry. J. Opt. Soc. Am. 39, 437–444 (1949).

ADS Google Scholar

Dicke, R. H. Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101 (1968).

ADS Google Scholar

Brady, D. J. (ed.) in Optical Imaging and Spectroscopy 11–53 (Wiley, 2008).

Yao, P. et al. Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides. Phys. Rev. B 80, 195106 (2009).

ADS Google Scholar

Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

ADS Google Scholar

Iorsh, I., Poddubny, A., Orlov, A., Belov, P. & Kivshar, Y. S. Spontaneous emission enhancement in metal–dielectric metamaterials. Phys. Lett. A 376, 185–187 (2012).

ADS Google Scholar

Lu, D., Kan, J. J., Fullerton, E. E. & Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9, 48–53 (2014).

ADS Google Scholar

Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).

ADS Google Scholar

Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014). Experimental demonstration of a metamaterial source operating at terahertz frequencies.

ADS Google Scholar

Yardimci, N. T. & Jarrahi, M. Nanostructure-enhanced photoconductive terahertz emission and detection. Small 14, 1802437 (2018).

Google Scholar

Burokur, S. N., Daniel, J. P., Ratajczak, P. & De Lustrac, A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl. Phys. Lett. 97, 064101 (2010).

ADS Google Scholar

Fong, B. H., Colburn, J. S., Ottusch, J. J., Visher, J. L. & Sievenpiper, D. F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).

ADS Google Scholar

TextXBadawe, M. E., Almoneef, T. S. & Ramahi, O. M. A true metasurface antenna. Sci. Rep. 6, 19268 (2016).

ADS Google Scholar

Smith, D. R., Yurduseven, O., Mancera, L. P., Bowen, P. & Kundtz, N. B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 8, 054048 (2017).

ADS Google Scholar

Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

ADS Google Scholar

Deng, Z.-L., Li, X. & Li, G. Metasurface holography. Synth. Lectures Mater. Opt. 1, 1–76 (2020).

Google Scholar

Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

ADS Google Scholar

Liu, X., Starr, T., Starr, A. F. & Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 1–4 (2010).

Google Scholar

Liu, X. & Padilla, W. J. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).

ADS Google Scholar

Fan, K., Suen, J. Y. & Padilla, W. J. Graphene metamaterial spatial light modulator for infrared single pixel imaging. Opt. Express 25, 25318 (2017).

ADS Google Scholar

Chen, Q. & Cumming, D. R. S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056 (2010).

ADS Google Scholar

Xu, T., Wu, Y.-K., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 159 (2010).

Google Scholar

Larouche, S., Tsai, Y. J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

ADS Google Scholar

Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

ADS Google Scholar

Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

ADS Google Scholar

Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys. Usp. 10, 509–514 (1968).

ADS Google Scholar

Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

ADS Google Scholar

Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

ADS Google Scholar

Shelby, R. A. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

ADS Google Scholar

Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). Study predicting perfect lens properties possible with negative refractive index metamaterials.

ADS Google Scholar

Adams, W., Sadatgol, M. & Güney, D. O. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging. AIP Adv. 6, 100701 (2016).

ADS Google Scholar

Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004). Subwavelength focusing with negative index metamaterials.

ADS Google Scholar

Fang, N. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). Experimental demonstration of a metamaterial superlens.

ADS Google Scholar

Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595–1595 (2006).

Google Scholar

Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).

ADS Google Scholar

Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006).

ADS Google Scholar

Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

ADS Google Scholar

Maxwell, J. C. The Scientific Papers of James Clerk Maxwell, Vol. 1 (Dover, 2011).

Luneburg, R. K. Mathematical Theory of Optics (Univ. California Press, 1964).

MATH Google Scholar

Wood, R. Physical Optics (Macmillan, 1911).

Marchand, E. Gradient Index Optics (Academic, 1978).

Google Scholar

PIERSCIONEK, B. K. Refractive index contours in the human lens. Exp. Eye Res. 64, 887–893 (1997).

Google Scholar

Pierscionek, B. K. & Regini, J. W. The gradient index lens of the eye: an opto-biological synchrony. Prog. Retin. Eye Res. 31, 332–349 (2012).

Google Scholar

Partridge, J. C. et al. Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis). Proc. R. Soc. B Biol. Sci. 281, 20133223 (2014).

Google Scholar

Rim, S.-B., Catrysse, P. B., Dinyari, R., Huang, K. & Peumans, P. The optical advantages of curved focal plane arrays. Opt. Express 16, 4965 (2008).

ADS Google Scholar

Liu, R. et al. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Opt. Express 17, 21030 (2009).

ADS Google Scholar

Driscoll, T. et al. Free-space microwave focusing by a negative-index gradient lens. Appl. Phys. Lett. 88, 081101 (2006).

ADS Google Scholar

Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

ADS Google Scholar

Yin, L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005).

ADS Google Scholar

Liu, Z. et al. Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005).

ADS Google Scholar

Huang, F. M., Zheludev, N., Chen, Y. & de Abajo, F. J. G. Focusing of light by a nanohole array. Appl. Phys. Lett. 90, 091119 (2007).

ADS Google Scholar

Shi, H. et al. Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815 (2005).

ADS Google Scholar

Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009).

ADS Google Scholar

Sun, Z. & Kim, H. K. Refractive transmission of light and beam shapingwith metallic nano-optic lenses. Appl. Phys. Lett. 85, 642–644 (2004).

ADS Google Scholar

Collischon, M. et al. Binary blazed reflection gratings. Appl. Opt. 33, 3572 (1994).

ADS Google Scholar

Zangwill, A. Modern Electrodynamics (Cambridge Univ. Press, 2013).

MATH Google Scholar

Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

ADS Google Scholar

Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

Google Scholar

Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017).

ADS Google Scholar

Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).

Google Scholar

Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 4, 2638–2649 (2017).

Google Scholar

Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081 (1998).

ADS Google Scholar

Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143 (1999).

ADS Google Scholar

Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003).

ADS Google Scholar

Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

ADS Google Scholar

Liu, W., Cheng, H., Tian, J. & Chen, S. Diffractive metalens: from fundamentals, practical applications to current trends. Adv. Phys. X 5, 1742584 (2020).

Google Scholar

Moon, S.-W., Kim, Y., Yoon, G. & Rho, J. Recent progress on ultrathin metalenses for flat optics. iScience 23, 101877 (2020).

ADS Google Scholar

Zou, X. et al. Imaging based on metalenses. PhotoniX 1, 2 (2020).

Google Scholar

Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

ADS Google Scholar

Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805 (2019).

ADS Google Scholar

Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).

ADS Google Scholar

Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

ADS Google Scholar

Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016).

ADS Google Scholar

Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).

ADS Google Scholar

Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

ADS Google Scholar

Schurig, D., Pendry, J. B. & Smith, D. R. Transformation-designed optical elements. Opt. Express 15, 14772 (2007). Experimental report demonstrating the design of optical components through transformation optics.

ADS Google Scholar

Sun, F. et al. Transformation optics: from classic theory and applications to its new branches. Laser Photonics Rev. 11, 1700034 (2017).

ADS Google Scholar

Schurig, D. An aberration-free lens with zero F-number. New J. Phys. 10, 115034 (2008).

ADS Google Scholar

Landy, N. I., Kundtz, N. & Smith, D. R. Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. Phys. Rev. Lett. 105, 193902 (2010).

ADS Google Scholar

Zhao, Y.-Y. et al. Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016).

ADS Google Scholar

Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct. Fundamentals Appl. 6, 87–95 (2008).

ADS Google Scholar

Roberts, D. A., Rahm, M., Pendry, J. B. & Smith, D. R. Transformation-optical design of sharp waveguide bends and corners. Appl. Phys. Lett. 93, 251111 (2008).

ADS Google Scholar

Smith, D. R., Urzhumov, Y., Kundtz, N. B. & Landy, N. I. Enhancing imaging systems using transformation optics. Opt. Express 18, 21238 (2010).

ADS Google Scholar

Zhang, J., Pendry, J. B. & Luo, Y. Transformation optics from macroscopic to nanoscale regimes: a review. Adv. Photonics 1, 1 (2019).

Google Scholar

Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).

ADS Google Scholar

Ginis, V. & Tassin, P. Transformation optics beyond the manipulation of light trajectories. Phil. Trans. R. Soc. A 373, 20140361 (2015).

ADS Google Scholar

McCall, M. et al. Roadmap on transformation optics. J. Opt. 20, 063001 (2018).

ADS Google Scholar

Isakov, D., Stevens, C. J., Castles, F. & Grant, P. S. 3D-printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions. Adv. Mater. Technol. 1, 1600072 (2016).

Google Scholar

Zhou, F. et al. Additive manufacturing of a 3D terahertz gradient-refractive index lens. Adv. Opt. Mater. 4, 1034–1040 (2016).

Google Scholar

Chan, W. L. et al. A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511 (2009).

ADS Google Scholar

Chaves, J. Introduction to Nonimaging Optics (CRC, 2016).

Winston, R. Nonimaging Optics (Elsevier, 2005).

Davis, D. S. Multiplexed imaging by means of optically generated Kronecker products: 1. The basic concept. Appl. Opt. 34, 1170 (1995).

ADS Google Scholar

Nadell, C. C., Watts, C. M., Montoya, J. A., Krishna, S. & Padilla, W. J. Single pixel quadrature imaging with metamaterials. Adv. Opt. Mater. 4, 66–69 (2015).

Google Scholar

Watts, C. M., Nadell, C. C., Montoya, J., Krishna, S. & Padilla, W. J. Frequency-division-multiplexed single-pixel imaging with metamaterials. Optica 3, 133 (2016).

ADS Google Scholar

Fan, K., Suen, J., Wu, X. & Padilla, W. J. Graphene metamaterial modulator for free-space thermal radiation. Opt. Express 24, 25189 (2016).

ADS Google Scholar

Hand, T. H. & Cummer, S. A. Reconfigurable reflectarray using addressable metamaterials. IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).

ADS Google Scholar

Badloe, T., Mun, J. & Rho, J. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. J. Nanomater. 2017, 2361042 (2017).

Google Scholar

Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

ADS Google Scholar

Renzo, M. D. et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 129 (2019).

Google Scholar

Renzo, M. D. et al. Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 1, 798–807 (2020).

Google Scholar

Liaskos, C. et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56, 162–169 (2018).

Google Scholar

Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218–e218 (2014).

ADS Google Scholar

Abadal, S., Cui, T.-J., Low, T. & Georgiou, J. Programmable metamaterials for software-defined electromagnetic control: circuits, systems, and architectures. IEEE J. Emerg. Sel. Topics Circuits Syst. 10, 6–19 (2020).

ADS Google Scholar

Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).

ADS Google Scholar

Marcuvitz, N. Waveguide Handbook (McGraw-Hill, 1951).

Google Scholar

Collin, R. Field Theory of Guided Waves (IEEE, 1991).

MATH Google Scholar

Harvey, A. F. Periodic and guiding structures at microwave frequencies. IRE Trans. Microw. Theory Tech. 8, 30–61 (1960).

ADS Google Scholar

Jackson, D. R., Caloz, C. & Itoh, T. Leaky-wave antennas. Proc. IEEE 100, 2194–2206 (2012).

Google Scholar

Chen, H.-T. et al. Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007).

ADS Google Scholar

Tao, H. et al. Microwave and terahertz wave sensing with metamaterials. Opt. Express 19, 21620 (2011). Experimental demonstration of a metamaterial bolometric detector.

ADS Google Scholar

Niesler, F. B. P., Gansel, J. K., Fischbach, S. & Wegener, M. Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012).

ADS Google Scholar

Szentpáli, B. et al. Thermopile antennas for detection of millimeter waves. Appl. Phys. Lett. 96, 133507 (2010).

ADS Google Scholar

Sizov, F. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol. 33, 123001 (2018).

ADS Google Scholar

Hui, Y., Gomez-Diaz, J. S., Qian, Z., Alù, A. & Rinaldi, M. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 7, 11249 (2016).

ADS Google Scholar

Montoya, J. A., Tian, Z.-B., Krishna, S. & Padilla, W. J. Ultra-thin infrared metamaterial detector for multicolor imaging applications. Opt. Express 25, 23343 (2017).

ADS Google Scholar

Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).

ADS Google Scholar

Benz, A. et al. Resonant metamaterial detectors based on THz quantum-cascade structures. Sci. Rep. 4, 4269 (2014).

Google Scholar

Kuznetsov, S. A., Paulish, A. G., Navarro-Cía, M. & Arzhannikov, A. V. Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci. Rep. 6, 21079 (2016).

ADS Google Scholar

Maier, T. & Brueckl, H. Multispectral microbolometers for the midinfrared. Opt. Lett. 35, 3766 (2010).

ADS Google Scholar

Stewart, J. W., Vella, J. H., Li, W., Fan, S. & Mikkelsen, M. H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2019).

ADS Google Scholar

Jung, J.-Y. et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Sci. Rep. 7, 430 (2017).

ADS Google Scholar

Stöckmann, F. Photodetectors, their performance and their limitations. Appl. Phys. 7, 1–5 (1975).

ADS Google Scholar

Rogalski, A. Infrared and Terahertz Detectors (CRC, 2018).

Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

ADS Google Scholar

Freire, M. J., Marques, R. & Jelinek, L. Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 93, 231108 (2008). Experimental demonstration of a negative μ metamaterial for MRI.

ADS Google Scholar

Haines, K., Neuberger, T., Lanagan, M., Semouchkina, E. & Webb, A. High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging. J. Magn. Reson. 200, 349–353 (2009).

ADS Google Scholar

Freire, M. J., Jelinek, L., Marques, R. & Lapine, M. On the applications of metamaterial lenses for magnetic resonance imaging. J. Magn. Reson. 203, 81–90 (2010).

ADS Google Scholar

Slobozhanyuk, A. P. et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28, 1832–1838 (2016).

Google Scholar

Zhang, S. et al. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 113, 111104 (2018).

ADS Google Scholar

Wu, P. C. et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568–2573 (2017).

Google Scholar

Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018).

Google Scholar

Li, W. & Valentine, J. G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017).

Google Scholar

Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

ADS Google Scholar

Lu, F., Lee, J., Jiang, A., Jung, S. & Belkin, M. A. Thermopile detector of light ellipticity. Nat. Commun. 7, 12994 (2016).

ADS Google Scholar

Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

ADS Google Scholar

Kuznetsov, S. A., Paulish, A. G., Gelfand, A. V., Lazorskiy, P. A. & Fedorinin, V. N. Bolometric THz-to-IR converter for terahertz imaging. Appl. Phys. Lett. 99, 023501 (2011).

ADS Google Scholar

Alves, F., Pimental, L., Grbovic, D. & Karunasiri, G. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Sci. Rep. 8, 12466 (2018).

ADS Google Scholar

Fan, K., Suen, J. Y., Liu, X. & Padilla, W. J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601 (2017).

ADS Google Scholar

Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

ADS Google Scholar

Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

ADS Google Scholar

Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

MathSciNet MATH ADS Google Scholar

Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 13, 4148–4151 (2013).

ADS Google Scholar

Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).

Google Scholar

Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 370–387 (2016).

Google Scholar

Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

ADS Google Scholar

Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 13864–13878 (2009).

Google Scholar

Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

ADS Google Scholar

Zhao, X. et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5, 303 (2018).

ADS Google Scholar

Lee, J. et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).

Google Scholar

Shrekenhamer, D., Chen, W.-C. & Padilla, W. J. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 110, 177403 (2013).

ADS Google Scholar

Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019).

ADS Google Scholar

Song, J. C. W. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).

ADS Google Scholar

Wang, J. & Jiang, Y. Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials. Opt. Express 25, 5206 (2017).

ADS Google Scholar

Diebold, A. V., Imani, M. F., Sleasman, T. & Smith, D. R. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures. Optica 5, 1529 (2018).

ADS Google Scholar

Harmuth, H. Sequency Theory: Foundations and Applications (Academic, 1977).

MATH Google Scholar

Harwit, M. Hadamard Transform Optics (Academic, 1979).

MATH Google Scholar

Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photonics 13, 13–20 (2018).

ADS Google Scholar

Swift, R. D., Wattson, R. B., Decker, J. A., Paganetti, R. & Harwit, M. Hadamard transform imager and imaging spectrometer. Appl. Opt. 15, 1595 (1976).

ADS Google Scholar

Zhang, Z., Ma, X. & Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015).

ADS Google Scholar

Wenwen, M. et al. Sparse Fourier single-pixel imaging. Opt. Express 27, 31490 (2019).

ADS Google Scholar

Stantchev, R. I. & Pickwell-MacPherson, E. in Terahertz Technology (IntechOpen, 2021).

Takhar, D. et al. in Computational Imaging IV Vol. 6065 (eds Bouman, C. A. et al.) 606509 (SPIE, 2006).

Pitsianis, N. P. et al. in Intelligent Integrated Microsystems Vol. 6232 (eds Athale, R. A. & Zolper, J. C.) 62320A (SPIE, 2006).

Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

MathSciNet MATH Google Scholar

Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

MathSciNet MATH Google Scholar